Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography.

نویسندگان

  • Lars Norlén
  • Sergej Masich
  • Kenneth N Goldie
  • Andreas Hoenger
چکیده

Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly alpha-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasticity of Intermediate Filament Subunits

Intermediate filaments (IFs) assembled in vitro from recombinantly expressed proteins have a diameter of 8-12 nm and can reach several micrometers in length. IFs assemble from a soluble pool of subunits, tetramers in the case of vimentin. Upon salt addition, the subunits form first unit length filaments (ULFs) within seconds and then assembly proceeds further by end-to-end fusion of ULFs and sh...

متن کامل

The mechanical properties of simple epithelial keratins 8 and 18: discriminating between interfacial and bulk elasticities.

The abundance and cytoplasmic organization of keratin filaments enables them to contribute to the maintenance of structural integrity in epithelial tissues. Co-polymers of the type II keratin 8 and type I keratin 18 form the major intermediate filament network in simple epithelia. We investigated the mechanical properties of K8-K18 filament suspensions using rheological assays in conjunction wi...

متن کامل

Cytoskeleton-associated plectin: in situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins

The association and interaction of plectin (Mr 300,000) with intermediate filaments and filament subunit proteins were studied. Immunoelectron microscopy of whole mount cytoskeletons from various cultured cell lines (rat glioma C6, mouse BALB/c 3T3, and Chinese hamster ovary) and quick-frozen, deep-etched replicas of Triton X-100-extracted rat embryo fibroblast cells revealed that plectin was p...

متن کامل

Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments

Epithelial migration plays a central role in development, wound repair and tumor metastasis, but the role of intermediate filament in this important event is unknown. We showed recently that vimentin coexists in the same cell with keratin-KRT14 at the leading edge of the migrating epidermal cells, and knockdown of vimentin impaired colony growth. Here we demonstrate that vimentin co-localizes a...

متن کامل

Novel electron tomographic methods to study the morphology of keratin filament networks.

The three-dimensional (3D) keratin filament network of pancreatic carcinoma cells was investigated with different electron microscopical approaches. Semithin sections of high-pressure frozen and freeze substituted cells were analyzed with scanning transmission electron microscope (STEM) tomography. Preservation of subcellular structures was excellent, and keratin filaments could be observed; ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental cell research

دوره 313 10  شماره 

صفحات  -

تاریخ انتشار 2007